

LA-UR-21-24201

Approved for public release; distribution is unlimited.

Title: Applied Acoustics Lab Overview

Author(s): Pantea, Cristian

Semelsberger, Troy Allen

Intended for: FCIC Task Lead Meeting

Report

Issued: 2021-04-30

Applied Acoustics Lab Overview

Cristian Pantea & Troy Semelsberger Materials Physics and Applications, MPA-11

FCIC Task Lead Meeting webex

LA-UR-21-XXXXX

Applied Acoustics Team

http://www.lanl.gov/orgs/mpa/mpa11/AcousticsAndSensorsTeam

Cristian Pantea

Applied Acoustics Team Leader

Troy Semelsberger

Research Scientist
Catalyst Synthesis & Testing
Reaction Engineering
Materials Characterization
Aging & Lifetime Analyses
Weapons and Non–Weapons work

Vamshi Chillara

Research Scientist
Electric Imp Spectroscopy
(Chevron)
Well Integrity Monitoring
CO₂ sequestration (DOE)
µarchitected Waveguides

John Greenhall

Research Scientist
Machine Learning
3DHEAT
Defects Thermoel Wafers
NDE weapons components
Electronics design

Craig Chavez:

Research Technologist

Mechanical and Electronics

Design, and System Configuration

Eric Davis

Postdoc
Well Integrity Monitoring
CO₂ sequestration (DOE)
D₂O content in heavy water
3DHEAT
Acoustic Monitoring of Pu
NDE of weapons components

Dipen Sinha

Visiting Scientist

Defects Thermoel Wafers

Welding inspection

NDE of weapons components

Electronics design

Christopher Hakoda

Postdoc

µarchitected Waveguides

Well Integrity Monitoring

Hung Doan

Postdoc
Corn stover acoustics sensor
Well Integrity Monitoring

Alan Graham

Research Associate

Defects detection in wafers

Welding inspection

NDE of weapons components

Pavel Vakhlamov

Post-Master
Mechanical and Electronics
Design, and System
Configuration

Sincheng Huang

Grad Student
Instrumentation development
LabView programming
D₂O content in heavy water

Our research - Applied Acoustics

Development of instrumentation, methods and sensors with a focus on difficult and challenging conditions (high pressure, high temperature, corrosive media, radiation, etc.)

Sensing

Manipulation with sound

Applied Acoustics Lab Capabilities

"Smart" Transfer Chutes with In-line Acoustic Sensors for Bulk-Solids Handling Solutions

- Objective: Develop innovative solids handling equipment (1) and unique in-line acoustic measurement sensors (2, 3) that improve operational reliability, safety, throughput, and yield of biorefineries.
- Current limitations: for moisture sensing: cost, durability, complexity, reliability, sampling volume, and continuous monitoring. There are no known commercial sensors for real-time monitoring of plug-screw feeder wear or commercial chutes with the ability to change configuration to discard problematic feedstock.
- Relevance: This project directly aligns with the long-term goal of FCIC, and the challenges identified in the ADO and Biorefinery Optimization Workshops by developing novel bulk solids handling equipment specifically designed for biomass material, and developing novel acoustic sensors addressing the long-standing, well-known IBR bulk solids handling challenges

1. "Smart" Chute

2. Moisture Sensor (corn stover)

3. Wear Sensor

Acoustic moisture sensor

Sample #

o 10% CS

o 75% CS

-10% CS LinReg

75% CS LinReg

Acoustic wear sensor for plug-screw feeder

In operando monitoring of plug-screw feeder wear state

Real and simulated augers

Undamaged auger

Description

Continuous real-time wear monitoring of plug-screw feeder

Value of new tool

- Offers advanced process control strategies
- Increases IBR plant operational safety
- Increases IBR time-on-stream
 - Decreases maintenance downtime & costs (i.e., failures)

Potential Customers & Outreach Plan

- IBR plants, additive manufacturing, mining,
- Tech transfer and commercialization

Simulated vibration spectrum

Observe mechanical resonances of objects to determine

physical properties of fluids and elastic properties of materials

Acoustic weld defect detection

 Weld detection in dense materials (Ta) challenging for radiography

Solution: scanning acoustic microscopy

Concentration of Particles in a Tube

Sound field is turned ON and OFF.

Piezoelectric Transducer @ 1.5 MHz

600 μm capillary, Flow~ 200 μL/min 20 μm polystyrene beads

Real Time Video

Biological cell analysis

Acoustic Flow Cytometer

Thermo Fisher Scientific

Acoustic Separation of Humidified Air

The video (real-time) shows the separation of mist from humidified air and concentrating the mist acoustically inside a hollow cylinder using sound. Once the mist is concentrated, It can be taken out of the system. Various types of implementation are possible and this is simply a proof-of-concept to show what is possible with sound.

IPV – targeted excitation of lungs (1)

- Intrapulmonary percussive ventilation (IPV): Applies periodic bursts of air/aerosolized medication down the trachea to improve air absorption and mucus clearance
- Currently, no good understanding of optimal parameters (frequency)
- We simulate how frequency affects sound penetration in lung bronchi

IPV – targeted excitation of lungs (2)

 Proof-of-principle: use vibrations to improve mucus clearance from a channel

Non-invasive mechanical separation of any two-phase system (e.g., liquid-liquid, liquid-solid, gas-liquid, etc.,) using sound

Liquid-Liquid Solid-Liquid

Manipulation of gas bubbles, liquid droplets, and solid particles with sound

Ultrasonic foam mitigation

Particles/bubbles suspended in the liquid, will be moved to the nodes/antinodes of the standing waves by the **Acoustic Radiation Force**

Outcome of attracting bubbles

$^{\sim}$ 1 MHz

Heavy Water Production Monitoring

A New Challenge for the IAEA

Arak Heavy Water Production Facility Girdler sulfide process + distillation

We can measure accurate and precise sound speed, to the first decimal point

→ high precision/accuracy for D₂O concentration, ~ 0.1%

Nuclear materials identification

 RUS - a nondestructive, very difficult to spoof, well-tested measurement method.

Good correlation between the elastic moduli and density for samples of different compositions/origins.

Able to identify nuclear material composition, fabrication method and source by measuring its RUS properties.

3DHEAT (3 dimensional high explosive acoustic temperature)

Acoustics diagnosis of thermal damage in Pentolite

Machine learning, CNN (convolutional neural network)

Thank you

IMG_5260_Edited.jpg

IMG_5268_Edited.jpg

IMG_5274_Edited.jpg

IMG_5269_Edited.jpg

IMG_5264JPG

IMG_5276_Edited.jpg

IMG_5265JPG

IMG_5266_Edited.jpg

IMG_5278JPG

IMG_5267_Edited.jpg

IMG_5279_Edited.jpg

ACCObeam

